咨询热线
18888889999
notice 网站公告
— 杏彩体育资讯 —
在微积分中,凸函数和凹函数是描述函数曲线弯曲程度的概念。一个函数f(x)在定义域I上是凸函数,当且仅当对于任意的x1, x2∈I和任意的t∈[0,1],都有以下不等式成立: f(tx1 + (1−t)x2) ≤ tf(x1) + (1−t)f(x2) 即函数曲线上任意两点的连线在函数曲线上方或在函数曲线上,也可以理解为函数曲线上的任意弦线均在函数曲线上方或在函数曲线上。如果上述不等式中的等号成立,则称该函数在I上是严格凸函数。 类似地,一个函数f(x)在定义域I上是凹函数,当且仅当对于任意的x1, x2∈I和任意的t∈[0,1],都有以下不等式成立: f(tx1 + (1−t)x2) ≥ tf(x1) + (1−t)f(x2) 即函数曲线上任意两点的连线在函数曲线下方或在函数曲线上,也可以理解为函数曲线上的任意弦线均在函数曲线下方或在函数曲线上。如果上述不等式中的等号成立,则称该函数在I上是严格凹函数。
如有需求请您联系我们!
地址:海南省海口市58号
电话:18888889999
手机:海南省海口市58号
Copyright © 2012-2018 首页-杏彩体育中国官方网站 版权所有 ICP备案编:琼ICP备88889999号